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Importance of Sentiment Analysis

Liu (2010) alleges that all textual information present in the
world may be categorized in only two types: facts and
opinions.

User generated content (UGC) is now part of our daily lives

Websites for product reviews have become an important
resource to find opinions and influence users.

The key of this transformation is to provide new methods to
convert the raw unstructured data into structured information.

3 / 78



Introduction
Introduction to Sentiment Analysis

Aspect-Based Sentiment Analysis
Datasets and tools

Experiments
Conclusions

Motivation
Objectives

Study of Sentiment Analysis

The study of sentiment analysis is categorized in three levels:
text level, sentence level, and aspect or entity level.

Example for aspect level:

The Iphone is a good device. The battery is excellent.
The quality is very good, but the price is not affordable.

Aspect Evaluative Word Sentiment
Iphone good Positive

battery (Iphone) excellent Positive
quality (Iphone) very good Positive
price (Iphone) not affordable Negative
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Aspect-based Sentiment Analysis for Portuguese

Freitas, Motta, Milidiú, and César (2012) compiled the corpus
ReLi with book reviews.

Example:

OP01- OBJ01
Eu não me apaixonei pela história .

Negative Opinion
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Research Gaps

1 Lack of understanding about opinions and sentiment analysis.

2 Difficulty to model linguistic phenomena.

3 Lack of research for Portuguese, thus few resources.
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Objectives

1 To explore approaches based on frequency, relation and
machine learning in aspect-based sentiment analysis and
establish new benchmarks for the Portuguese.

2 To compare state of the art approaches for English with
Portuguese corpora.

3 To investigate the use of syntax and semantics in Portuguese
ABSA methods.

4 To develop new tools and lexicons for sentiment analysis.
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Hypotheses

1 Deep linguistics knowledge such as syntax and semantics
improve aspect-based sentiment analysis.

2 Aspect-based sentiment analysis approaches do not differ
between English and Portuguese.

3 Corpora from different domains show different challenges.
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Sentiment Analysis

Definition

Sentiment analysis, or opinion mining, is the area in Natural
Language Processing that deals with the computational treatment
of opinion, sentiment and subjectivity in text (Pang & Lee,
2008).
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Opinion: it consists of two components, a target object
and an associated sentiment.

Sentiment: generic term to designate every text expressing
positive, negative, or neutral characteristics.

Subjectivity: the presence in the text of sentiment, points
of view or personal beliefs.

Emotion: our subjective feelings and thoughts (Liu,
2012).
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Opinion

Formally, a sentiment or opinion, is defined by (Liu, 2010) as
a quintuple (oj , fjk , ooijkl , hi , ll) where

oj is an object,
fjk is a feature of the object oj ,
ooijkl is the semantic orientation or polarity of the opinion on
feature fjk of object oj ,
hi is the opinion holder and tl is the time when the opinion is
expressed by hi .

11 / 78



Introduction
Introduction to Sentiment Analysis

Aspect-Based Sentiment Analysis
Datasets and tools

Experiments
Conclusions

Terminology
Initial Works

Opinion

Opinion can be classified into two types:

direct opinions: are those in which we have an evaluation or
sentiment about an aspect present in an object
referred into the text.

comparative opinion: expresses a relation between two or more
objects.
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Opinion

A direct opinion may still take the explicit or implicit form.

Explicit direct opinion: the opinion is expressed explicitly in the
sentence.

Implicit direct opinion: an inference of context and world
knowledge is required to understand the expressed
opinion.
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Opinion

Aspects can appear in two forms in the text: explicit aspects
and implicit aspects.

Explicit aspects: aspects that are present in text.

Implicit aspects: aspects that are only perceptible through
inference.
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Lexical Generation

Dictionary-based approaches (Hu & Liu, 2004; Kim & Hovy,
2004).

Propagation approach exploits the relations between
sentiment words and topics or product features (Qiu, Zhang,
Hu, & Zhao, 2009).
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Sentiment Classification

Pang, Lee, and Vaithyanathan (2002) performed supervised
classification in a movie reviews dataset.

Wilson, Wiebe, and Hoffmann (2009) study features for
supervised machine learning.

Taboada, Brooke, Tofiloski, Voll, and Stede (2011) use a
lexicon method to determine the polarity, or semantic
orientation, for the individual words in the text.
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Sentiment Analysis for Portuguese

Elaboration of corpus (Sarmento, Carvalho, Silva, &
De Oliveira, 2009; Carvalho, Sarmento, Silva, & de Oliveira,
2009; Scopim et al., 2012)

Sentiment lexicons (Silva, Carvalho, Costa, & Sarmento,
2010; Pasqualotti, 2008; Souza et al., 2011; Balage Filho,
Pardo, & Alúısio, 2013)

Sentiment classification at the document level (Afonso et al.,
2011; Amancio, Fabbri, Oliveira Jr, Nunes, & da F Costa,
2010; Souza & Vieira, 2012)
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Definitions

According with Liu (2010), the aspect-based sentiment
analysis is composed by three main tasks:

1 Aspect extraction: task responsible for extracting aspects
and their modifiers.

2 Group entity, aspects and modifiers: task consists in
grouping entities, aspects, and modifiers.

3 Sentiment classification: determine whether the opinion is
positive, negative or neutral.
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Task

Identification and extraction of aspects
and modifiers

Aspects, entities and modifiers
clustering

Summarization/Visualization

Texts with opinions

Sentiment classification

Aspects and 
modifiers

Text summary or chart

Aspects, 
modifiers, 
sentiment
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Definitions

According to Pontiki et al. (2014), the activity of
aspect-based sentiment analysis is analyzed for different tasks
on different datasets from different perspectives.

They propose a joint assessment to be held in Semantic
Evaluation Workshop (SemEval) comprising four subtasks:

1 Aspect Term Extraction (Opinion Target Extraction)
2 Aspect Term Polarity
3 Aspect Category Detection
4 Aspect Category Polarity
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Aspect Term Extraction

There are different techniques for aspect extraction (Liu,
2012).

1 Frequency-based
2 Relation-based
3 Machine learning
4 Topic modeling
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Frequency-based works

Hu and Liu (2004) extract the most frequent nouns and noun
phrases as candidate for aspects.

Popescu and Etzioni (2005) remove candidates based on the
Pointwise Mutual Information (PMI) relation between the
aspect and the candidates.

Blair-goldensohn et al. (2008) refined the candidates to the
ones which obeying certain syntactic patterns.
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Aspect Term Extraction

There are different techniques for aspect extraction (Liu,
2012).

1 Frequency-based
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Relation-based works

Hu and Liu (2004) collects infrequent aspects associated with
words of sentiment.

Zhuang, Jing, and Zhu (2006) uses a dependency parser to
indicate the relationship between aspects and their targets.
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Machine learning for aspect extraction

Jin, Ho, and Srihari (2009) apply a hidden and lexicalized
Markov chain to learn patterns to extract expressions of
aspects and opinions.

Jakob and Gurevych (2010) trained a Conditional Random
Field (CRF) for the extraction of aspects and opinions.
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Aspect Term Extraction

There are different techniques for aspect extraction (Liu,
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Topical modeling for aspect extraction

Mei, Ling, Wondra, Su, and Zhai (2007) propose a joint
model based on Probabilistic Latent Semantic Analysis
(pLSA) for the extraction of aspects and sentiments.

Li, Huang, and Zhu (2010) proposed two joint models for
extraction, one for sentiment and the other for aspects that
depend on this sentiment.
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Aspect-based Sentiment Analysis for Portuguese

Carvalho, Sarmento, Teixeira, and Silva (2011) describes the
construction of a corpus in the political domain with the
annotation of opinions and their targets.

Silva, Carvalho, Sarmento, Magalhães, and Oliveira (2009)
developed the system OPTIMISM to recognize and analyse
the sentiment towards entities in the political domain.
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Aspect-based Sentiment Analysis for Portuguese

Chaves, de Freitas, Souza, and Vieira (2012) presents the
PIRPO tool for rating sentiment in online evaluations for the
hotel sector. It uses an ontology in the hotel domain and a
lexicon of sentiment (Souza et al., 2011) for extracting and
classifying aspects contained in the text.

Ribeiro, Junior, Meira, and Pappa (2012) presents a polarity
classification system for aspects in vehicle evaluation texts
using lexical- and machine learning-based classifiers. The
extraction of aspects was not covered by the work.
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Aspect-based Sentiment Analysis for Portuguese

Fernandes (2010) presents the HowGood tool that performs
the analysis of sentiment at the aspect level using frequent
nouns using manually filtered aspects of interest

da Silva (2010) adapted the previous system using the
SentiWordNet (Esuli & Sebastiani, 2006) lexic using the
Google Translate tool to translate the terms from English to
Portuguese.
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Aspect-based Sentiment Analysis for Portuguese

Siqueira and Barros (2010) present a process of extraction of
aspects in the analysis of sentiment for texts in Portuguese in
the e-commerce domain. The WhatMatter system, described
by them, performs four steps: identifies frequent nouns,
identifies relevant nouns, maps aspect indicators, and removes
unrelated nouns.
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Aspect-based Sentiment Analysis for Portuguese

Nobre et al. (2016) shows intial studies for an aspect-based
sentiment analysis system in the e-commmerce domain using
the machine learning approach with a conditional random field
following the approach taken by (Balage Filho & Pardo, 2014).

Vargas and Pardo (2017) studies and propose an ontology to
group aspects in Portuguese.
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State-of-art for SemEval ABSA 2015 - Opinion Target
Expression (OTE)

San Vicente, Saralegi, and Agerri (2015) present the EliXa
system first ranked in the OTE task in the 2015 edition, with
70.05% for f-score.

This system used machine learning based on the Averaged
Perceptron algorithm with the following machine learning
characteristics: n-grams; part-of-speech label; n-grams of
prefixes and suffixes; Brown clusters and word embeddings.
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State-of-art for SemEval ABSA 2015 - Opinion Target
Expression (OTE)

Toh and Su (2015) show the NLANGP system, the second
highest score for the OTE task in the 2015 edition, reached
the f-score of 67.11%.

This system was based on the machine learning algorithm
Conditional Random Fields with the following characteristics:
the word itself; the head of the syntactic constituents
(obtained from a dependency parser); lists of names (extracted
based on frequency from a corpus); and Brown clusters.
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State-of-art for SemEval ABSA 2016 - Opinion Target
Expression (OTE)

Toh and Su (2016) present the system NLANGP that was the
best system in the OTE task with the f-measure score of
72.34%.

The system, an enhancement of the same system that won
the second place in the previous edition of the competition,
brings the addition of a new learning feature based on the
extracted probability of a recurrent neural network.
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State-of-art for SemEval ABSA 2016 - Opinion Target
Expression (OTE)

Xenos, Theodorakakos, Pavlopoulos, Malakasiotis, and
Androutsopoulos (2016) present the system AUEB, second in
the OTE task in the 2016 edition, reached the score of 70.44%
through a system based on the algorithm Conditional Random
Fields with the following set of characteristics: part-of-speech
tags; lexicon, list of aspects and word embeddings.
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ReLi

We use the corpus ReLi (Freitas et al., 2012) extracted from
a social plataform for sharing opinion on books.

Composed of 2,056 reviews from 13 different books with
about 200 comments each.

OP01- OBJ01
Eu não me apaixonei pela história .

Negative Opinion
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ReLi

According to Freitas et al. (2012), the main difficulty in the
process of noting the corpus was to distinguish subjective
information from factual information.

Tabela: Distribution of expressions of opinion according to the number of
word (Freitas et al., 2012)

N-gram size Frequency

1-3 69%
4-6 15%
7+ 15%
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SemEval ABSA Dataset

Restaurant and Laptop domains.

1000 review texts (approx., 6K sentences) with fine-grained
human annotations (opinion target expressions, aspect
categories and polarities).
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PALAVRAS

The syntax parser PALAVRAS (Bick, 2000) allows automatic
part-of-speech tagging and syntactical analysis of texts in
Portuguese.

The analyzer outputs a tokenized text, the part-of-speech
annotations, a dependency parsing of each sentence and, a
semantic type for some words.

42 / 78



Introduction
Introduction to Sentiment Analysis

Aspect-Based Sentiment Analysis
Datasets and tools

Experiments
Conclusions

Frequency- and relation-based aspect extraction
Relation-based methods
Machine Learning methods

Outline
1 Introduction

Motivation
Objectives

2 Introduction to Sentiment Analysis
Terminology
Initial Works

3 Aspect-Based Sentiment Analysis
Aspect Term Extraction
Aspect-based sentiment analysis for Portuguese
State-of-art

4 Datasets and tools
5 Experiments

Frequency- and relation-based aspect extraction
Relation-based methods
Machine Learning methods

6 Conclusions
Publications

43 / 78



Introduction
Introduction to Sentiment Analysis

Aspect-Based Sentiment Analysis
Datasets and tools

Experiments
Conclusions

Frequency- and relation-based aspect extraction
Relation-based methods
Machine Learning methods

Methodology

Approch ReLi and SemEval datasets with classic and
advanced methods for aspect extraction.

Explore frequency, relation and machine learning-based
approaches.

Study how the inclusion of syntax and semantic could help the
algorithms.

Release new tools for the community.
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Basic steps for Aspect Extraction for Frequency-based

1 Compute all word frequencies tagged as aspects in the
training set.

2 Select a threshold for cut.

3 Tag all the aspects which repeat in the test set.
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Aspect Extraction for Frequency-based

Tabela: Distribution of aspects in the ReLi corpus

Extracted Word frequency Relative Freq. Freq. as Relative Freq.
aspects in Corpus word in corpus aspect as aspect

livro (book) 2779 1.07% 916 33.0%
história (story) 864 0.33% 208 24.1%
leitura (reading) 409 0.16% 112 27.4%
personagens (story characters) 321 0.12% 85 26.5%
crepúsculo (Twilight) 260 0.10% 62 23.8%
narrativa (narrative) 141 0.05% 61 43.3%
final (final) 193 0.07% 57 29.5%
romance (romance) 274 0.11% 55 20.1%
obra (book) 251 0.10% 48 19.1%
ele (him) 1053 0.40% 43 4.1%
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Aspect Extraction for Frequency-based

Tabela: ReLi Aspect Extraction Scores for Frequency Methods

Run ReLi corpus – Aspect Extraction
Precision Recall F-measure

All aspects 7,14% 82,26% 13,13%
Stopwords cut 14,32% 79,11% 24,25%
Frequency cut 30.27% 55.51% 39,17%
Relative frequency cut 36,44% 78,25% 49,73%
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Aspect Extraction for Frequency-based

Tabela: Distribution of aspects in the SemEval ABSA 2015 corpus

Extracted Word frequency Relative Freq. Freq. as Relative Freq.
aspects in Corpus word in corpus aspect as aspect

food 190 1.03% 158 83.2%
service 127 0.69% 117 92.1%
place 135 0.73% 82 60.7%
restaurant 82 0.44% 29 35.4%
staff 33 0.18% 27 81.8%
pizza 42 0.23% 26 61.9%
atmosphere 26 0.14% 21 80.8%
sushi 32 0.17% 20 62.5%
decor 19 0.10% 16 84.2%
ambience 13 0.07% 13 100.0%
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Aspect Extraction for Frequency-based

Tabela: Extraction results of aspects in the SemEval ABSA 2016 corpus
using frequency based methods

Method Precision Recall F-score

1. All aspects 50,88% 62,31% 56,02%
2. Stopwords cut 50,88% 62,31% 56,02%
3. Frequency cut 50,88% 62,31% 56,02%
4. Relative frequency cut 60,35% 58,77% 59,55%
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Observations

The relative frequency of the word in the SemEval ABSA
corpus is higher in comparision to the ReLi corpus.

This indicates that the words labeled as aspects in the ReLi
corpus are used in a more varied manner and therefore lead to
greater difficulty in the extraction process.

For comparison to the state of the art, only possible in the
SemEval ABSA corpus, the best system in the 2015
competition obtained an f-measure of 70.00% (San Vicente et
al., 2015) while with frequency-based approaches achieved
59,55%

This observation leads us to consider that, even though they
are simple methods, the frequency-based methods have good
results.
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Relatation-based approach

patterns in extracting aspects of texts is presented in
(Nasukawa & Yi, 2003).

Patterns involve the relation between the verb, aspect and
opinion.

In out approach, we extracted patterns

Sentence O livro é bom Eu adorei o livro

Learned Patterns
Verb ser adorar
Aspect livro livro
Opinion bom adorar
Polarity positiva positiva
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Relatiton-based approach

Tabela: Extraction results of aspects in the ReLi corpus using the method
of (Nasukawa & Yi, 2003)

Method Precision Recall F-score

Patterns with lemma 22,60% 17,85% 19,94%
Patterns with PoS 8,30% 17,85% 11,33%
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Machine Learning methods

The methods based on machine learning allow to feed the
learning algorithms with sets of features extracted from the
text and let the algorithm itself decide the most important set
of characteristics for each case.

The learning algorithms that best fit the problem of aspect
extraction are the algorithms belonging to the class of
sequential learning. Examples of tasks inside this class are:
part-of-speech tagging (Silfverberg, Ruokolainen, Lindén, &
Kurimo, 2014), shallow parsing (Sha & Pereira, 2003), entity
recognition (Finkel, Grenager, & Manning, 2005), among
others.
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Machine Learning methods

The biggest challenge resides in feature engineering.

experiments are reported using the CRF algorithm through the
framework CRFSuite (Okazaki, 2007), used in conjunction
with the machine learning library Scikit-Learn (Pedregosa et
al., 2011).
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Features Evaluated

word: we use the word or token extracted as a form of
lexicalization of the learning model;

lemma: the use of the lemma (as opposed to the word) brings
generalization to learning, which usually improves
learning for morphologically rich languages;

Part-of-Speech : The PoS label enriches learning by generalizing
the word by its function;
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Features Evaluated

dependency relation: the syntactic relation obtained through a
dependency parser add context to the learning model.
It provides the syntactic function for the word in the
sentence;

head of the syntactic relation: The head of a syntactic relation is
the word that governs the syntactic relation towards
the word in analysis. With this, we were able to
capture the modification and effect relationships
between words in the sentence, thus adding context.
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Features Evaluated

Figura: Example of syntatic parser produced by PALAVRAS
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Features Evaluated

hierarchical clusters of words: the clusters used here are extracted
through the methodology defined by (Brown,
Desouza, Mercer, Pietra, & Lai, 1992); In this
technique, words are organized hierarchically into
clusters according to their meaning obtained through
the context of their use in a corpus;
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Features Evaluated

word representation vectors: word representation vectors capture
context and semantic relations between words
expressed by their numerical values within a vector
space of representation. The generation methodology
of the representation vectors adopted here is based
on the work of (Mikolov & Dean, 2013), known as
Word2Vec;
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Features Evaluated

In order to obtain clusters and representation vectors using the
Word2Vec technique, a corpus of book reviews was automatically
built by crawling the Skoob.com website, which was the source for
the elaboration of the text. ReLi corpus. This corpus consists of
343,000 reviews representing the entire collection of reviews of the
site as of November 20, 2015.
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Features Evaluated

semantic category from parser PALAVRAS: the syntactic parser
PALAVRAS provides together with its analysis the
semantic category of some words. This information is
tied to its grammar used for sentential analysis.
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Features Evaluated

Tabela: Semantic tags present in the ReLi corpus annotated by the parser
PALAVRAS

Label Explanation Freq. Relative Freq. Exemples
sem-r que pode ser lido 5573 9.34% livro(50.3%), história(13.6%), leitura(5.9%), romance(3.9%)

am abstrato 3634 6.09% amor(6.4%), tempo(6.2%), partido(5.9%), poder(3.1%), atenção(2.2%)

ac abstrato contável 3338 5.60% amor(7.0%), coisa(10.3%), parte(4.9%), verdade(4.2%)

per peŕıodo do tempo 2889 4.84% história(26.3%), vida(14.8%), ano(7.9%), tempo(7.8%), dia(3.5%)

sem-c produto da cognição 2075 3.48% obra(10.2%), fim(5.8%), visão(4.4%), trama(4.0%), opinião(3.7%)

HH grupo de humanos 1830 3.07% sociedade(9.9%), parte(9.0%), grupo(7.2%), faḿılia(6.3%), governo(4.5%)

H humano 1790 3.00% pessoas(22.3%), amor(13.0%), criança(4.9%), tipo(4.7%)

temp temporal 1710 2.87% ano(13.4%), tempo(13.1%), final(8.9%), vez(8.4%), fim(7.1%)

percep-f que pode ser sentido 1667 2.79% forma(15.2%), verdade(8.5%), realidade(7.7%), nome(4.9%), pena(4.7%)

act ação 1298 2.18% ação(3.2%), carinho(2.5%), geração(2.3%), manipulação(1.8%), prisão(1.8%)
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Results

Tabela: Results of machine learning using CRF in the ReLi corpus with
PALAVRAS Parser

Experiment Features Precision Recall F-score
1 Word 57,30% 15,50% 24,40%
2 Word+PoS 56,90% 15,40% 24,20%
3 Lemma+PoS+Head 58,50% 20,10% 29,90%
4 Lemma+PoS+Head+Sem 60,40% 24,70% 35,10%
5 Lemma+Pos+Head+Sem+ clusters+Word2Vec 60,40% 24,70% 35,10%
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Dependency Parser using the Universal TreeBank

The Universal Dependencies have been used for many tasks in
Natural Language Processing (Manning et al., 2014).

The MaltParser was trained using the Universal Dependency
Corpus (Nivre et al., 2016).
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Results

Tabela: Results of machine learning using CRF in the ReLi corpus with
syntactic annotations of Universal TreeBank

Experiment Features Precision Recall F-score
1 Word 59,00% 15,10% 24,10%
2 Word+PoS 54,40% 16,10% 24,80%
3 Lemma+PoS+Head 57,10% 20,00% 29,70%
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Results

Tabela: Results of machine learning using CRF in the corpus SemEval
ABSA 2016

Experiment Features Precision Recall F-score
1 Word 77,20% 46,80% 58,30%
2 Word+PoS 75,30% 55,40% 63,80%
3 Lemma+PoS+Head 78,00% 57,50% 66,20%
4 AUEB (Xenos et al., 2016) 71,82% 69,12 70,44%
5 NLANGP (Toh & Su, 2016) 75,49% 69,44% 72,34%
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Discussion

Results for SemEval show the machine learning could achieve
a score closer to the state of the art.

Results for the ReLi show the frequency methods are
extremely efficient.

This difference is possibly due to the annotation criteria and
the domain/genre of the reviews.
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Objectives

1 To explore approaches based on frequency, relation and
machine learning in aspect-based sentiment analysis and
establish new benchmarks for the Portuguese.

2 To compare state of the art approaches for English with
Portuguese corpora.

3 To investigate the use of syntax and semantics in Portuguese
ABSA methods.

4 To develop new tools and lexicons for sentiment analysis.
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Hypotheses

1 Deeper linguistics knowledge such as syntax and semantics
improve aspect-based sentiment analysis.

Confirmed. PALAVRAS semantic tags helped to achieve a
better score.

2 Aspect-based sentiment analysis approaches do not differ
between English and Portuguese.

The methods could be easily used interchangeably between
languages.

3 Corpora from different domains show different challenges.

The differences in domain and aspect distribution impact the
choice of the method.
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Contributions

This research, unprecedented for the Portuguese language, has
resulted in relevant contributions to the area of research, both
theoretical and practical. Some of these are:

1 The exploration of methods based on the frequency and
proposal of a variation that overcame the classical methods of
this approach;

2 The exploration of a classic method based on relation and the
proposal of automation of its application, by learning
automatic patterns of occurrence of aspects;

3 The research of linguistic standards in aspect-based sentiment
analysis in Portuguese;
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Contributions

This research, unprecedented for the Portuguese language, has
resulted in relevant contributions to the area of research, both
theoretical and practical. Some of these are:

5 The exploration of methods based on machine learning and its
enrichment with linguistic information of a syntactic and
semantic nature, producing better results than the original
methods;

6 Linguistic characterization of semantic nature of the most
frequent aspects in Portuguese language;

7 UTB-based syntactic parser training, providing a new tool for
the research area;

8 Pre-processing and availability of the ReLi corpus with
syntactic and semantic information.
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75 / 78



Introduction
Introduction to Sentiment Analysis

Aspect-Based Sentiment Analysis
Datasets and tools

Experiments
Conclusions

Publications

Publications

Roque Lopez, Thiago Pardo, Lucas Avanço, Pedro Paulo
Balage Filho, Alessandro Bokan, Paula Cardoso, Márcio Dias,
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Núcleo Interinstitucional de Lingúıstica Computacional (NILC)
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